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We present evidence for the regular behaviour of the Boyle temperature TB in gaseous
binary mixtures of small molecules with negligible multipolar moments. We use this regu-
larity to construct a new combining rule for the prediction of the cross interaction u12(r)
in those mixtures. The combining rule gives TB of the cross interaction as the harmonic
mean of the Boyle temperatures of the pure components. The validity of this harmonic rule
is based on experimental data of 28 binary mixtures, whose TB have been obtained from ex-
perimental data of the cross virial coefficient B12(T). In determining TB we make use of
non-conformal potentials that have been proven to represent very accurately the effective
interactions of the molecules investigated. The new combining rule is used to give interac-
tion parameters of several dozens of binary mixtures involving noble gases (Ne, Ar, Kr and
Xe), diatomic molecules (N2, O2 and CO) and n-alkanes (from methane to n-octane). These
interaction parameters lead to a prediction of cross virial coefficients B12(T) within experi-
mental error. Electrostatic interactions, originating in permanent dipolar, quadrupolar,
octupolar and hexadecapolar moments and exemplified by molecules of HCl, CO2, CF4 and
SF6, depart from the regular non-polar behaviour.
Keywords: Combining rules; Virial coefficients; Binary mixtures; Interactions; Polar and
non-polar molecules; Boyle temperature; ANC potentials.

All classical theories of mixtures and solutions require knowledge of the in-
teractions uα,β between molecules of species α and β. The problem of incor-
porating adequate interaction models for uα,β is usually divided into two
steps: the first is to determine the pure-component interactions uα,α, the
step that can be carried out using information provided by quantum-
mechanical ab initio calculations and/or inversion of thermodynamic data.
The second step is to obtain the cross interaction uα≠β that in principle
could be determined in the same way. Nevertheless, given the large number

Collect. Czech. Chem. Commun. 2009, Vol. 74, No. 2, pp. 363–391

Rule for Fluid Mixtures 363

© 2009 Institute of Organic Chemistry and Biochemistry
doi:10.1135/cccc2007198



of possible systems and the scarcity of data, cross interactions in fluid mix-
tures are frequently predicted by means of combining rules expressing the
parameters of the cross interaction in terms of the parameters characteriz-
ing the pure substances1.

Ab initio quantum-mechanical calculations have increased significantly
our knowledge of interaction potential surfaces not only between noble gas
atoms but also between molecules of increasing complexity, as exemplified
by recent work on N2, CO2 and Hg 2–5. This type of work has also been done
for interactions between different noble gas atoms6–8 or molecules such as
CH4–N2

9 or fluorobenzene–argon10. Nevertheless, the same as with experi-
mental determinations, the large number of binary systems of interest
makes the calculation of every possible pair interaction unfeasible. This re-
inforces the need for developing adequate combining rules.

Combining rules are tied to the equation of state or to the interaction
model used. Most interaction models involve two parameters: the first, ε,
characterising the interaction energy and the second, δ, associated with the
size or diameter of the molecules. The models more widely used are very
simple potentials such as hard spheres and square wells or more realistic
continuous functions, such as the popular Lennard–Jones potential with
exponents 12 and 6 (LJ/12–6) or the Kihara potential with a spherical
core11. Only very few studies have used three-parameter potentials such as
the LJ/n–6 12.

Attempts to derive combining rules from first principles have been based
on the analysis of an approximate quantum-mechanical approach to the
interatomic attraction, in particular those of London13 and Kirkwood–
Müller14. These theories give formulae for the attractive potential between
two atoms that involve atomic or molecular attributes; polarisabilities and
ionization energies for the London approach, and polarisabilities and dia-
magnetic susceptibilities for that of Kirkwood–Müller. When combined
with a particular potential function and after some simplifications these
formulae lead to the combining rules of Hudson–McCoubrey15 and of
Fender–Halsey16. Further simplification of the Hudson–McCoubrey rule
gives the widely used Berthelot rule, although this was originally proposed
even before the advent of quantum mechanics17. A second and semi-
classical line of approach considers separating the repulsion or ‘distortion’
energy between two atoms as proposed by Sikora18. Again, new combina-
tion rules are obtained when this idea is used jointly with a specific interac-
tion function19. All the combining rules obtained in either of these two
ways contain different kinds of mean values (arithmetic, geometric or har-
monic) of the molecular attributes and potential parameters. Díaz Peña and
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co-workers have studied systematically a large number of possible combina-
tion rules derived from the above arguments and used the LJ/12–6 potential
and the Kihara potential with a spherical core20. They assess the combina-
tion rules by their ability to predict second virial coefficients and by the
similarities of the parameters thus obtained with parameters derived from
inversion of transport data. One of their conclusions is that there appears
no systematic trend in classes of substances and that the simplest rules –
the arithmetic mean for the diameters (Lorentz) and the geometric or har-
monic mean for the energies (Berthelot17 and Fender–Halsey16) – “are close
to the rules giving the best results”20.

The purpose of this paper is threefold. First, to introduce an empirical
rule that holds for a large class of non-polar substances. This rule is inde-
pendent of the particular type of potential function used. Second, to incor-
porate a three-parameter potential, which has proven to be very accurate
in accounting for the thermodynamics of the fluids here considered, in the
hope that a more accurate and systematic treatment of pure substances
can lead to better results for their cross interactions. Third, to establish the
limits of application of the empirical rule proposed and to determine which
is the best set of rules – as far as simplicity and accuracy are concerned – for
the non-polar substances here studied.

In the last decade a new family of three-parameter potential functions
has been introduced and shown to account very accurately for the proper-
ties of pure fluids. These functions are termed approximate non-conformal
(ANC) potentials and depend on the shape or form parameter s, besides the
energy ε and diameter δ 21. The ANC potentials have proven to be very suc-
cessful in accounting for the second and third virial coefficients, B(T) and
C(T), of many substances, leading to predictions in close agreement with
experimental information22. They have also been used to predict critical
temperatures for polar and non-polar fluids. A recent review is available for
the reader interested in this topic23.

Here we use the ANC potential functions in two ways. In the first case,
as a tool for the determination of the Boyle temperature, TB (defined by
B(TB) = 0), from experimental Bexp(T) data in binary mixtures. It is very
common that Bexp(T) data for many substances are available only at tem-
peratures well below TB. This fact together with the uncertainties in Bexp(T)
leads to quite unreliable estimates of TB for many substances of interest.
The inherent robustness of the ANC approach makes up for a part of these
difficulties and allows to determine the Boyle temperatures of the cross in-
teractions of 28 mixtures involving 18 simple pure substances: the noble
gases (He, Ne, Ar, Kr and Xe), diatomic molecules with small or negligible
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dipole moments (H2, N2, O2 and CO) and n-alkanes (from CH4 to n-C8H18).
We also consider HCl, CO2, CF4 and SF6 as examples of polar molecules.
The values of TB thus obtained and available information on B T12

exp ( ) allow
us to establish that the Boyle temperature of the cross interaction, T12

B , is
very close to the harmonic mean of Ti

B for individual components, i. e.,

2 1 1

12 1 2T T TB B B
= + . (1)

Since TB in the ANC theory is expressed directly in terms of the substance
interaction parameters ε, δ and s, Eq. (1) gives in essence a combining rule
for these parameters.

In the second application of the ANC approach, we show that the above
combining rule leads to a prediction of the cross interactions in systems dif-
ferent from those used to construct the rule. The knowledge of these effec-
tive interactions, together with the ANC potential functions and other two
well known combining rules, gives very accurate second virial coefficients
for close to 90 binary mixtures.

In the next section we introduce the ANC potential functions and quote
the properties more relevant for our purposes. In the same section, we in-
troduce the more traditional combining rules relevant to this work. Then
we present our main results, namely, the empirical evidence supporting the
rule in Eq. (1) and discusses its application in the prediction of the cross in-
teractions of the binary systems here considered, and for which no empiri-
cal evidence is available or is insufficient. Finally, in the last section we
advance a few conclusions.

THEORY

ANC Potential Functions

The family of non-conformal potentials used in this work is defined by21
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where ζ = (z3/s + 1 – 1/s)1/3, z = r/δ, r is the interparticle distance, a =
0.09574 and δ is the distance where the function (2) has its minimum
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uANC(z = 1) = –ε. The form of uANC(z) is determined by the dimensionless
form factor s called the softness of the potential. For s = 1.1215 the func-
tion uANC(z) is closely conformal to a LJ/12–6 potential. Decreasing s makes
uANC(z,s) steeper (or harder) so that for s = 0 Eq. (2) gives a hard-sphere po-
tential. Any two potentials with the same s are conformal to each other and
follow the principle of corresponding states; whereas potentials differing in
s are not conformal to each other22. The reader can find a more detailed ac-
count of the ANC theory in a recent review23.

An important property of ANC functions follows directly from their defi-
nition (2) and is expressed as a linear relationship between reduced second
virial coefficients B*(T*,s) = B kT s( / , )/( / )ε πδ2 33 of two non-conformal sys-
tems. Here we set T* = kT/ε. In particular, choosing as reference the system
with s = 1, and writing B0

* ≡ B*(T*,s = 1), this linear property is21

BANC
* (T*,s) = 1 – s + sB0

* (T*) . (3)

This relation, exact for ANC potentials, is followed to very good approxima-
tion by the virial coefficients of many substances22. The reference virial co-
efficient B0

* (T*) is known as a function of T* and closely resembles the virial
coefficient of argon22. Hence, from Eqs (2) and (3) the knowledge of the pa-
rameters ε, δ and s determines directly both the potential function and
B(T).

The Boyle temperature TB where B(TB,s) = 0 follows simply from Eq. (3) as

B T s s0 B
* *( ) ( )/= −1 (4)

which can be inverted numerically to obtain22

T sB
* ( ) = 0.189754 + 2.09123s – 1.404325s2 +

+ 3.87119s3 – 3.225s4 + 1.27345s5 . (5)

Combining Rules

The combining rules, which will be referred to in this work, were chosen
from a wide selection19,24–27, because of their simplicity and accuracy18.
They are the rule of Lorentz for the molecular diameters

δ δ δ12 1 2 2= +( )/ (6)
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and for the energy the rules of Berthelot15

ε ε ε12 1 2= (7)

of Hudson–McCoubrey15

ε ε ε
δ δ

δ12 1 2
1 2

1 2

1 2

12

2 2
=

+
I I

I I
(8)

and the harmonic mean of Fender–Halsey16

ε
ε ε

ε ε12
1 2

1 2

2
=

+
. (9)

In these equations, εi and δi are the interaction parameters that correspond
to the pure components and ε12 and δ12 give the cross interactions in the
mixture. Last, Ij are the (first) ionization energies of the molecules. In ap-
proaches using two parameters, the Lorentz rule Eq. (6) together with one
of Eqs (7), (8) and (9) are sufficient to specify the cross interactions. Never-
theless, for three-parameter potentials such as uANC(z,s) one needs a third
combining rule to determine the softness s12 of the cross interaction. Here
we propose the harmonic combination of the Boyle temperatures,

T
T T

T T
12

1 2

1 2

2B
B B

B B
=

+
. (10)

Since T T kij ij ij
B *B= ε / and T T sij ij

*B *B= ( ) we can write Eq. (10) in terms of the
interaction parameters εij and sij:
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It is useful to combine Eqs (7), (8) and (9) with Eq. (11) to get the following
relations for the cross interaction softness s12:

T s
T s T s

T s T s*B

*B *B

*B *B( )
( ) ( )

( ) ( )12
1 2

1 1 2 2

1 2

2
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ε ε
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. (14)

When used jointly with Eq. (11), Eqs (12), (13) and (14) are equivalents to
the rules of Berthelot, Hudson–McCoubrey and Fender–Halsey, respectively.
We have written explicitly that the factors Tij

*B are functions of sij, which
are given by Eq. (5).

RESULTS AND DISCUSSION

Harmonic Mean Rule for Boyle Temperatures

We present here the evidence regarding the validity of the harmonic mean
rule (HMR) for the Boyle temperatures given by Eq. (10). It is reasonable to
expect that the validity of a given set of combining rules depends on the
type of molecular interaction involved. Here we focus our discussion on the
cases where the short-range overlap and the London dispersion forces pre-
dominate. Thus we have selected 16 substances with negligible multipolar
moments: the noble gases (He, Ne, Ar, Kr and Xe), three diatomic molecules
(H2, N2 and O2) and eight n-alkanes (from methane to n-octane). For brev-
ity we shall refer to these molecules as non-polar; they were chosen for two
reasons. First, their ANC interaction parameters and Boyle temperatures are
well established, and second, there is experimental information about the
cross virial coefficients of many of their binary mixtures. Further, the mo-
lecular properties (size, ionization energy I and polarisability α) of the no-
ble gases and of the alkanes vary systematically within each group. Besides
these substances and in order to explore the influence of electrostatic inter-
actions, we have also considered five additional molecules: CO and HCl
(dipolar), CO2 (quadrupolar), CF4 (octupolar) and SF6 (hexadecapolar). Mo-
lecular properties of 21 selected substances are given in Table I. The ioniza-
tion energies were taken from Vedeneev et al.28 except for that of HCl that
was taken from the NIST database29.

All experimental data on B(T) were obtained from the recent exhaustive
compilation of Dymond et al.30. The possible binary mixtures of the sub-
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stances here considered fall into three sets with respect to the existence and
quality of Bexp(T) data: set I, systems for which Bexp(T) data are sufficient in
number, temperature range and quality to determine TB with reasonable ac-
curacy. Set II, systems for which there are Bexp(T) data, but these are only
sufficient to give a qualitative estimate of the values of TB, and set III, sys-
tems without Bexp(T) data.
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TABLE I
Interaction parameters of pure substancesa

Substance (ε/k), K δ, nm s TB, K I, eVb

He 7.264 0.2982 1.1152 24.36 24.58

Ne 40.45 0.3054 1.0583 124.0 21.56

Ar 145.9 0.3685 0.9993 407.8 15.78

Kr 202.9 0.3985 0.9993 566.9 14.00

Xe 280.6 0.4333 0.9993 784.3 12.13

H2 22.18 0.3669 1.3192 104.6 15.60

N2 132.7 0.3889 0.9172 326.3 15.58

O2 160.3 0.3620 0.9432 410.3 13.62

CO 145.3 0.3960 0.8876 340.8 14.01

SF6 479.9 0.5037 0.6068 707.4 19.30

CH4 210.5 0.3947 0.9073 509.4 12.99

C2H6 361.1 0.4627 0.8088 747.6 11.65

C3H8 515.0 0.4997 0.7008 893.2 11.08

n-C4H10 671.4 0.5330 0.6148 1003.9 10.63

n-C5H12 805.7 0.5673 0.5503 1071.1 10.55

n-C6H14 929.9 0.5993 0.5119 1149.0 10.48

n-C7H16 1059.2 0.6255 0.4693 1202.8 10.39

n-C8H18 1174.2 0.6515 0.4388 1251.9 10.24

CF4 325.4 0.4496 0.6558 522.7 17.80

SF6 479.9 0.5037 0.6068 707.4 19.30

CO2 486.1 0.3830 0.5994 707.1 13.79

HCl 561.3 0.3823 0.4510 736.6 12.74

a Values of ANC parameters ε, δ and s, and Boyle temperatures TB are those reported in
ref.22e b Ionisation energies are from refs28,29



Analysis of the information provided for set I allows us to identify 28
mixtures satisfying the HMR for TB. Tables IIA and IIB contain the informa-
tion about these mixtures. The tables compare the value of TB determined
from the Bexp(T) data – denoted TB(exp) – with the value TB(HMR) obtained
from the combining rule, Eq. (10). The fourth column shows the per-
centage deviation 100 × δT TB B/ (exp), where δT T TB B B HMR= −(exp) ( ). De-
termination of TB from the Bexp(T) data was made by interpolation or
extrapolation of the same data. Of course, to be significant, a nonzero devi-
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TABLE IIA
Binary mixtures obeying the HMR and involving noble gases and diatomic molecules

System

TB, K
100 × δTB
TB(exp)a

δB(eq)b

cm3 mol–1
δB(exp)c

cm3 mol–1

exp HMR

Ne–Ar 191.7 190.1 0.8 0.2 ±3.0

Ne–Kr 204.9 203.4 0.7 0.2 ±2.0

Ne–Xe 204.3 214.1 –4.6 –1.7 ±3.0

Ar–Kr 476.5 474.3 0.5 0.2 ±6.0

Ar–Xe 532.8d 536.5 –0.7 –0.4 ±2.0

Kr–Xe 648.6 658.1 –1.4 –0.8 ±6.0

Ne–N2 168.7 179.7 –6.1 –1.9 ±3.0

Ne–O2 202.4 190.4 6.3 1.7 ±2.5

Ne–CO 171.0 181.8 –6.0 –1.9 ±1.0

Ar–N2 363.0 362.5 0.1 0.1 ±3.0

Ar–O2 398.9 409.0 –2.5 –1.3 ±2.5

Ar–CO 372.1 371.3 0.2 0.1 ±4.0

Ar–HCl 522.6d 524.9 –0.4 0.2 ±3.2

Kr–CO 426.7d 425.7 0.2 0.1 ±1.0

Xe–N2 467.4d 460.9 1.4 0.9 ±2.0

Xe–CO 482.4 475.1 1.5 1.0 ±4.0

N2–CO 333.1 333.4 0.5 0.3 ±1.0

N2–O2 371.7 363.5 2.3 1.0 ±0.8

a δTB is the deviation of TB(exp) from the value obtained by the HMR. b δB(eq) is the equiva-
lent deviation in B(T) form experiment producing the observed deviation δTB (see the text).
c δB(exp) is an estimate of the experimental error in B at points close to TB. d TB obtained by
extrapolation of Bexp(T) data; the remaining values involve an interpolation of Bexp(T).



ation δTB has to be smaller than the error in determining TB itself. On inter-
polation, the error in TB is due to the error δBexp ascribed to experimental
points and their scatter. On extrapolation, there is an additional source of
error, which depends on the extrapolating function and the distance of the
experimental points to the B = 0 axis. For all systems of set I, the error in
TB(exp) was estimated to be smaller than 5%.

The deviation δTB is thus a first indicator of the validity of the HMR for
these mixtures: most systems in Tables IIa and IIB show deviations smaller
than 3% and only a few deviate for as much as 4 or 6%, while systems in
Tables IIIA and IIIB show deviations as large as 65%. In order to ascertain
further that the HMR follows the experimental information on these sys-
tems we compare the experimental error of the Bexp(T) data with dBeq =
( / )∂ ∂B T dTB , which is the error in B that would be necessary to produce the
observed error δTB. The deviation δBeq is shown in column 5 of the table
and for the HMR to apply it should be smaller than the estimated experi-
mental uncertainty of the data, δBexp, contained in the last column. The
magnitude of δBexp was obtained from the same source as the Bexp(T) data30.
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TABLE IIB
Binary mixtures obeying the HMR for TB involving n-alkanes with noble gases and diatomic
molecules. Explanation of the symbols is the same as in Table IIA

System

TB, K
100 × δTB
TB(exp)

δB(eq)
cm3 mol–1

δB(exp)
cm3 mol–1

exp HMR

Ar–CH4 454.1 452.9 0.3 –0.1 ±1.5

Ar–C2H6 517.1a 527.7 –2.0 1.3 ±0.6

Ar–C3H8 556.1a 559.9 –0.7 0.5 ±1.0

Kr–CH4 535.2 536.6 0.3 0.1 ±1.5

Xe–C2H6 751.3a 765.5 –1.9 1.5 ±16.0

N2–CH4 396.1a 397.8 –0.4 0.2 ±0.5

N2–C2H6 469.6a 454.3 3.4 –2.3 ±2.0

N2–C4H10 486.2a 492.5 –1.3 3.7 ±6.5

O2–CH4 436.1a 454.3 –4.0 2.0 ±1.0

CO–CH4 415.8a 408.37 1.8 –1.0 ±0.5

a TB obtained by extrapolation of Bexp(T) data; the remaining values involve an interpola-
tion of Bexp(T).



Analysis of the information gathered on δTB shows very clearly which
systems satisfy the HMR (Tables IIA and IIB) and which not (Tables IIIA and
IIIB). The mixtures that follow the HMR for TB are all those constituted by
non-polar substances – except He, H2 and to some extent Ne. Systems with-
out n-alkanes are considered in Table IIA, and Table IIB contains systems
with at least one alkane.

We first explain, with reference to Fig. 1, the procedure followed to deter-
mine TB by interpolation or extrapolation using the ANC model for B(T).
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TABLE IIIA
Binary mixtures not obeying the HMR for TB that contain He or H2. Explanation of the sym-
bols is the same as in Table IIA

System

TB, K
100 × δTB
TB(exp)

δB(eq)
cm3 mol–1

exp HMR

He–Ne 52.83 40.72 22.9 5.8

He–Ar 70.47a 45.97 34.8 13.4

He–Kr 83.18a 46.71 43.8 22.4

He–Xe 105.0a 47.25 55.0 65.9

He–H2 29.64 39.52 –33.3 6.4

He–N2 82.59 45.34 45.1 21.9

He–CO 86.10 45.47 47.2 24.2

He–O2 99.57 45.99 53.8 27.8

He–SF6 128.1a 47.13 63.2 58.0

H2–Ne 96.87a 113.5 –17.1 3.0

H2–Ar 223.7 166.7 25.6 8.9

H2–Kr 253.0 176.6 30.2 12.3

H2–Xe 265.2 184.6 30.4 13.8

H2–CO 178.7 169.7 10.4 3.3

H2–N2 169.2 158.4 6.4 1.9

H2–CH4 198.4 173.6 14.3 3.6

H2–C2H6 277.1 183.5 51.0 27.6

H2–C8H18 295.1 193.1 52.8 39.6

a TB obtained by extrapolation of Bexp(T) data; the remaining values involve an interpola-
tion of Bexp(T).



The figure shows the cross second virial coefficients B12(T) of two systems:
Ne–Ar and Kr–CO. For each mixture we show the experimental points
Bexp(Ti) and the curve fitted to them that was used to localize the Boyle
point B = 0. This curve is given by the ANC model for B(T; ε12, δ12, s12), Eq. (3),
with δ12 from the Lorentz rule and an initial value for the softness given by
s12

0 = 2s1s2/(s1 + s2); then ε12 was determined by a least-square fit to the
Bexp(Ti) data. Usually this procedure leads to a fit well within the scatter of
the experimental data. In the cases where this did not happen a new value
of s12 was adopted and the procedure repeated again.

We now analyse Fig. 1 as example of the way in which the HMR is satis-
fied. The first mixture, Ne–Ar at the top in Fig. 1, has the Boyle point B = 0
at TB(exp) = 191.7 clearly interpolated by the fitting curve BANC(T). The fig-
ure also shows the Boyle point obtained from the HMR: it sits almost pre-
cisely where the fitting curve crosses the B = 0 axis. The second mixture,

Collect. Czech. Chem. Commun. 2009, Vol. 74, No. 2, pp. 363–391

374 González-Calderón, del Río:

TABLE IIIB
Boyle temperatures for binary mixtures with significant electrostatic interactions. Explana-
tion of the symbols is the same as in Table IIA

System

TB, K
100 × δTB
TB(exp)

δB(eq)
cm3 mol–1

exp HMR

CO2–CH4 622.41 592.2 5.1 –2.4

CO2–C2H6 870.19 726.8 19.7 –7.8

HCl–C3H10 629.31 807.4 –22.1 28.1

HCl–Kr 434.91 640.7 –32.1 29.7

CO–C3H8 533.7 493.4 8.2 –2.0

CO–C8H18 602.4 535.8 11.1 –9.3

CH4–CF4 466.8 516.0 –9.5 –8.3

C2H6–CF4 557.9 615.3 –9.3 10.2

SF6–Ne 267.7a 211.0 28.2 11.1

SF6–N2 478.1a 446.6 7.1 5.3

SF6–O2 510.9a 519.4 –1.6 –1.1

SF6–Ar 574.1a 517.3 9.9 5.7

SF6–Kr 586.8a 629.4 –6.8 –5.2

a TB obtained by extrapolation of Bexp(T) data; the remaining values involve an interpola-
tion of Bexp(T).



Kr–CO at the bottom in Fig. 1, has its Boyle point outside the range of ex-
perimental data, nevertheless, the fitting curve nicely extrapolates and
crosses the B = 0 axis very close to the HMR value. Figure 2 gives two exam-
ples of mixtures, N2–CH4 and CH4–C2H6, containing an alkane and follow-
ing the HMR. The fitting curves in both systems cross the B = 0 axis very
close to the Boyle point determined by the HMR.

All systems in Tables IIA and IIB follow the same behaviour as the exam-
ples in Figs 1 and 2. The percentage deviations of TB from the HMR are
smaller than 3% for the large majority of systems, the equivalent errors δBeq
are all smaller than 4 cm3 mol–1 and in most cases they are smaller than
δBexp. So the HMR clearly applies to these systems within experimental un-
certainty.

The Boyle temperatures of the cross interactions for mixtures of the light
gases, He and H2, are given in Table IIIA. Examples of the anomalous be-
haviour of these systems are the He–Kr and Xe–H2 mixtures whose B(T) is
shown in Fig. 3. In the first mixture the Boyle point is below the range of
the data and the fitting curve crosses the B = 0 axis at a point 36 K above
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FIG. 1
Temperature dependence of the virial coefficients of the mixtures Ne–Ar (�) and Kr–CO (�).
The stars (✳ ) denote the Boyle temperatures according to the harmonic mean rule, MHR. The
lines correspond to an ANC model. Both systems satisfy the MHR



the HMR value for TB. In the latter mixture the Boyle point falls within the
range of the data but these clearly point to a Boyle temperature quite differ-
ent from that given by the HMR. Figure 4 gives two examples of mixtures,
CF4–CH4 and Kr–HCl, that do not follow the HMR. The fitting curves in
both systems cross the B = 0 axis far away from the Boyle point determined
by the HMR.

The systems in Tables IIIA and IIIB do not follow the HMR. The devia-
tions δTB are significant, predominantly positive, in all cases but one larger
than 10% and even as large as 63%. The equivalent errors δBeq are corre-
spondingly higher. A tentative explanation of the anomalies of systems in
Table IIIA is in order. He and H2 make an exception because their correct
treatment should be based on quantum mechanics even if their virial coef-
ficients are very well accounted for by ANC functions. Thus their anoma-
lous behaviour vis-à-vis the combining rules could be tentatively ascribed to
quantum-mechanical effects. A puzzling case is that of neon. While the
mixtures of Ne with Ar, Kr, Xe, N2, O2 and CO all conform to the HMR (see
Table IIA) the Ne–CH4 mixture has its Boyle temperature clearly away from
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FIG. 2
Temperature dependence of the virial coefficients of the mixtures N2–CH4 (�) and CH4–C2H6
(�). The stars (✳ ) denote the Boyle temperatures according to the harmonic mean rule, MHR.
The solid lines correspond to an ANC model and the dotted and dashed lines represent B(T) of
the pure components: N2 (left), CH4 (middle) and C2H6 (right). Both systems satisfy the HMR
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FIG. 3
Temperature dependence of the virial coefficients of the mixtures He–Kr (�) and Xe–H2 (�).
The stars (✳ ) denote the Boyle temperatures according to the harmonic mean rule. These sys-
tems do not follow the rule

FIG. 4
Temperature dependence of the virial coefficients of the mixtures CF4–CH4 (�) and Kr–HCl (�).
The Boyle temperature according to the harmonic mean rule is denoted by a star (✳ ) for
CF4–CH4 and by a diamond (�) for Kr–HCl. These systems do not follow the HMR rule



the HMR value, a deviation that, accepting the reported errors in Bexp(T),
cannot be ascribed to experimental uncertainties.

We find that mixtures where electrostatic interactions are not important
follow also the HMR. This happens in particular in mixtures where the po-
lar constituent – such as CO – has a small dipolar moment and the non-
polar constituent is weakly polarisable. Tables IIA and IIB contain examples
of this behaviour in systems formed by CO with Ne, Ar, Kr, Xe, N2 and CH4.
It turns out that the mixture Ar–HCl has also a very small deviation δTB ≈
2.5 K from the HMR and has thus been included in this class; it seems that
in spite of the high dipole moment of HCl the polarisability of argon is
small enough to make the induction effects negligible.

The behaviour of TB changes drastically with mixtures involving mole-
cules with strong electrostatic interactions, which can be due to an increase
in the electrostatic moment of one of the molecules in the mixture, or to
the increased polarisability of the non-polar molecule, or to both factors
combined. We already gave examples of this behaviour in Fig. 4. We first
analyse the effect of increasing the polarisability of one component at a
fixed dipole moment µ µ εδ* /= 3 of the second. We discuss the mixtures of
CO as component 1 with Ar, Kr, Xe, N2, CH4, C3H8 and n-C8H18 as compo-
nent 2. In the order of increasing reduced polarisabilities α* = αδ3, we have:
α* = 29.9 (N2), α* = 32.4 (Ar), α* = 39.3 (Kr), α* = 41.2 (CH4), α* = 49.4 (Xe),
α* = 50.3 (C3H8) and α* = 55.7 (n-C8H18). From the tables, we find that
δTB grows abruptly from almost zero for CO–N2 (or Ar) to δTB ≈ 67 K for
CO–n-C8H18. This means that δTB increases with the polarisability of the
non-polar component, which is what we could expect if deviations from
the HMR were ascribed to the electrostatic induction forces between CO
and its polarisable partner molecule given that these forces are proportional
to α*µ*2. Consideration of the mixtures containing HCl leads to a similar
conclusion: Whereas the HCl–Ar mixture has TB very close to the HMR
value, mixing HCl with the more polarisable C3H8 and Kr gives significant
deviations, δTB ≈ 176 and 206 K (see Tables IIA and IIIB). In these cases, of
course, deviations are much larger than for CO due to the higher dipole
moment of HCl. Contributions from other electrostatic moments follow
similar trends. The quadrupolar moment of N2 does not appear to have any
noticeable effect although we can assess the influence of the quadrupolar
moment by looking at mixtures with CO2: when mixed with CH4 it gives
δTB ≈ 30 K (Table IIIB) but, when mixed with the more polarisable C2H6, it
has δTB ≈ 143 K. The octupolar interaction follows similar lines, as con-
firmed by two mixtures: CF4–CH4 and CF4–C2H6 have deviations δTB ≈ 49
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and 58 K, respectively. Lastly, introducing a hexadecapolar molecule, SF6,
again produces a departure from the HMR with δTB ≈ 9 K for SF6–O2 and
δTB ≈ 57 K for SF6–Ar.

The 28 systems whose TB follows the HMR (Tables IIA and IIB) and the
31 systems that do not follow this rule (Tables IIIA and IIIB) are all the bi-
nary mixtures for which TB can be determined with a reasonable accuracy
of ca. 5%. All 31 systems but one, that do not conform to the HMR, contain
a light molecule (He or H2) or an induced electrostatic interaction between
a fairly polarisable molecule and another one with a permanent multipolar
moment. The only troublesome exception is the Ne–CH4 mixture; it shows
a deviation from the HMR, which even though small, cannot be explained
easily by advocating the reported experimental uncertainties.

We shall focus next on the use of the HMR to predict the cross interac-
tion virial coefficient B12(T) of all mixtures for which the rule can be as-
sumed to hold. The comparison of this prediction with experiment brings a
further proof of the validity of the HMR for mixtures of molecules with
negligible electrostatic moments.

Prediction of Cross Interactions

Based on the results of the last subsection, we assume that the HMR holds
for all mixtures of the non-polar molecules here considered with the excep-
tion of those involving He or H2. In order to complete the set of combining
rules, we assume the Lorentz rule for the diameters and one of the follow-
ing rules: Berthelot, Hudson–McCoubrey and Fender–Halsey. With these
rules, the pure-substance parameters in Table I and the ANC model for
BANC(T) (Eq. (3)), we can predict the second virial coefficient for any mix-
ture and compare it with experiment. The results of these predictions are
given in Tables IV for different types of molecules. The tables contain the
diameter δ12 obtained from the Lorentz rule and, for each of the three com-
bining rules considered, the tables give the energy ε12, the softness s12 and
the root-mean-square deviation Q of the model B(T) from the experimental
data. The comparison of the energy rules in the tables allows to assess the
adequacy of each to predict B12(T).

We start by considering the mixtures of noble gases and diatomic mole-
cules in Table IVA. Since these mixtures are not too asymmetric, with po-
tential parameters of similar magnitude, all three energy rules give similar
values of ε12 and s12. They give also almost equally good predictions, with
small deviations from the data. Nevertheless, on a closer look, we can re-
gard the Fender–Halsey rule as slightly more accurate; not only because it
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has a smaller overall deviation, but also because this rule is intrinsically
better in dealing with conformal and nearly conformal systems. Indeed, it
is the only rule to give an adequate answer in the limiting case of a
conformal mixture, where both substances and the cross interaction should
have equal softness. To exhibit this point we substitute s1 = s2 in Eqs (12),
(13) and (14) to get, after simplification,

T s T s*B *B( ) ( )12
1 2

1 2
1

2
=

+
ε ε

ε ε
(15)

T s
I I

I I

d

d d
T s*B *B( ) ( )12

1 2

1 2

12

1 2

1 2

1 2
1

2

2
=

+
+
ε ε

ε ε
(16)

and

T s T s*B *B( ) ( )12 1= . (17)

It can be immediately seen that in the general conformal case (ε1 ≠ ε2, δ1 ≠
δ2, s1 = s2), only the third rule (Fender–Halsey) makes the cross interaction
conformal to the other two ones. Table IVA contains three strictly con-
formal mixtures (with s1 = s2 = 0.9993): Ar–Kr, Ar–Xe and Kr–Xe. For them
the Fender–Halsey rule prediction of B(T) is the closest to Bexp(T) (it has the
smallest Q).

We now consider systems involving alkanes. Their predicted interaction
parameters are given in Tables IVB (mixtures with noble gases), IVC (mix-
tures with diatomic molecules) and IVD (mixtures with other alkanes).
These parameters and the consequent mean deviation Q from Bexp(T) were
obtained in the same way as those of noble gases in Table IVA. The three
energy-combining rules give almost equal results for mixtures that are
nearly conformal. These mixtures are those of CH4 with a noble gas or a di-
atomic molecule, and those with two n-alkanes differing only in one carbon
atom: CH4–C2H6, C2H6–C3H8, C3H8–n-C4H10, n-C4H10–n-C5H12, n-C5H12–n-C6H14,
n-C7H16–n-C8H18. In systems of higher n-alkanes with diatomic molecules
or of two alkanes differing in two or more carbon atoms, the Berthelot rule
is clearly superior to the other two ones; almost in all cases it gives smaller
mean deviations than the Fender–Halsey or Hudson–McCoubrey rules. The
exceptions seem to be C3H8–n-C7H16 and C3H8–n-C8H18, and, to a lesser ex-
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tent, n-C4H10–n-C6H14 and n-C6H14–n-C8H18. The results for n-alkanes with
noble gases in Table IVB, however, look little systematic: the Berthelot rule
gives very good agreement for the mixtures of Ar–CH4, Ar–C4H10 and
Ar–n-C8H18, and again for Kr–CH4 and Xe–CH4 mixtures. Nevertheless, this
rule seems to give poor predictions for Ar–n-C5H12, Ar–n-C6H14 and
Ar–n-C7H16.

In order to determine the possible origin of a poor prediction by the
Berthelot rule in the cases pointed out above we have first to look directly
at the Bexp(T) data. We consider first the mixtures of Ar with CH4, C2H6,
C3H8 and C4H10. Figure 5 shows Bexp(T) for each of these systems together
with the ANC predictions using the Berthelot rule, which agrees very well
with the data. Next, in Fig. 6, we show the difficult cases of mixtures of Ar
with n-C5H12, n-C6H14, n-C7H16 and n-C8H18 clearly showing that the dis-
agreement of the theory with the data is due to the poor quality of the lat-
ter. The case of the mixtures C3H8–n-C7H16 and C3H8–n-C8H18 can similarly
be ascribed to experimental data of very poor quality.
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FIG. 5
Cross second virial coefficient in mixtures of Ar with n-alkanes. B12 experimental data of Ar
with CH4 (�), C2H6 (�), C3H8 (�) and n-C4H10 (�). The lines are the ANC predictions using
the HMR with the rules of Lorentz and Berthelot



All the above means that the Berthelot rule for the energy, the Lorentz
rule for the diameters and the corresponding HMR for the softness con-
stitute a set of combining rules which, when used jointly with the ANC
potentials, gives a good prediction of all the 66 systems in Tables IV. Never-
theless, for mixtures of a noble gas with another noble gas or with a di-
atomic, the Fender–Halsey rule may be considered better. The results of the
Hudson–McCoubrey rule are very close to those of the Berthelot rule.

As the final exercise we predict the cross interactions in systems with
n-nonane, n-decane and n-dodecane. No direct measurements of B(T) for
these hydrocarbons have been reported in the literature. Nevertheless, there
are data on several mixtures involving them, namely for n-C9H20, n-C10H22
and n-C12H26 mixed with Ar, N2 and CH4. Here we calculate B12(T) for these
systems by a simple procedure. First, we obtain the ANC parameters for
n-C9H20, n-C10H22 and n-C12H26 based on previous analyses of the ANC
interactions of the first 8 alkanes. This analysis affords formulae ε(n), δ(n)
and s(n) for the interaction parameters in terms of the number n of carbon
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FIG. 6
Second virial coefficient in mixtures of Ar with n-alkanes. B12 experimental data of Ar with
n-C5H12 (�), n-C6H14 (�), n-C7H16 (�) and n-C8H18 (�). The lines are the ANC predictions us-
ing the HMR with the rules of Lorentz and Berthelot for Ar–n-C5H12 (solid line at the top),
Ar–n-C6H14 (dashed line), Ar–n-C7H16 (dash-and-dotted line) and Ar–n-C8H18 (solid line at the
bottom)



atoms in the alkane22. The values of these parameters are given in Table V
together with the calculated Boyle temperature for each substance. Second,
we calculate the cross interaction parameters ε12(n), δ12(n) and s12(n) for n =
9, 10 and 12 using the rules of Lorenz, Berthelot and HMR. Third, we calcu-
late B(T) from the ANC model. The resulting theoretical results BANC(T) are
then compared with experimental data in Figs 7 and 8 for mixtures with
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TABLE V
Interaction parameters and Boyle temperatures TB of the higher n-alkanes considered in this
work

Substance εk–1, K δ, nm s TB, K

n-C9H20 1301.1 0.6791 0.4127 1311.8

n-C10H22 1414.7 0.7045 0.3902 1357.1

n-C11H24 1523.5 0.7290 0.3706 1397.9

n-C12H26 1627.5 0.7528 0.3535 1434.6

FIG. 7
Second virial coefficient in mixtures of n-nonane. B12 experimental data of n-C9H20 with Ar (�),
N2 (�) and CH4 (�). The lines are the ANC predictions using the HMR with the rules of Lo-
rentz and Berthelot



n-C9H20 and n-C10H22. The agreement of the theory with experiment is very
good. However, in the mixture involving n-C12H26 for which B T12

exp ( ) data
are available, the prediction agrees poorly with the only two experimental
points; the scarcity of the data does not permit to draw any firm conclusion.

All the said above allows to use the HMR together with the Lorentz and
Berthelot rules to predict the interaction parameters and virial coefficients
for mixtures of non-polar substances, and in particular for the 50 binary
mixtures of heavy noble gases, N2 and O2, and the first ten n-alkanes. The
parameters of these interactions are not reported explicitly here since the
reader can calculate them straightforwardly from the combining rules and
parameters of pure compounds given in the present paper.

CONCLUSIONS

We have shown the existence of an empirical rule giving the Boyle temper-
ature of the cross interaction as the harmonic mean of the TB of the pure
components. We have proven that this HMR is supported, with very good
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FIG. 8
Second virial coefficient in mixtures of n-decane. B12 experimental data of n-C10H22 with
N2 (�) and CH4 (�). The lines are the ANC predictions using the HMR with the rules of
Lorentz and Berthelot



accuracy, by experimental B(T) data for 28 binary mixtures. This rule
should withhold in mixtures of non-polar molecules, except He and H2, and
for some polar molecules with not-too-high electrostatic moment mixed
with not-too-polarisable molecules. Both quantum-mechanical effects and
electrostatic interactions are factors explaining departures from the HMR.

The virial coefficients of non-polar substances can be predicted with good
accuracy using the ANC potentials and the combining rules of Lorenz,
Berthelot and the HMR. The prediction of cross interactions in systems con-
taining n-alkanes with 9 and 10 carbons agrees very well with experiment.

SYMBOLS

a hard-core diameter of the Kihara potential function
B second virial coefficient
B12 cross second virial coefficient
BANC second virial coefficient of ANC system
B* reduced second virial coefficient
BANC

* reduced second virial coefficient of ANC system
B0

* reduced reference second virial coefficient
Bexp experimental value of the second virial coefficient
B12

exp experimental value of the cross second virial coefficient
C third virial coefficient
Ij ionization energy of i-th species
i, j particle number
k Boltzmann constant
Q root-mean-square deviation
r centre-to-centre distance
s softness form parameter
si softness of i-th species
s12 softness of cross interaction
s12

0 initial value of softness parameter
T temperature
T* reduced temperature
TB Boyle temperature
T*B reduced Boyle temperature
Ti

B Boyle temperature of i-th species
T12

B Boyle temperature of cross interaction
uANC ANC-type potential function
u0 reference potential function
uαβ cross interaction potential (between dissimilar species)
z dimensionless distance
α molecular polarisability
α* reduced molecular polarisability
δ mean molecular diameter
δ12 cross mean molecular diameter
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δBeq error in B equivalent to deviation δTB
δBexp estimated experimental error in B
δTB deviation of experimental Boyle temperature from the mean harmonic rule
δρV, δρL statistical errors in vapour and liquid densities
ε attractive energy parameter
εi energy parameter of i-th interaction
ε12 energy parameter of cross interaction
µ dipole moment
µ* reduced dipole moment
ζ auxiliary variable
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