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We present evidence for the regular behaviour of the Boyle temperature Ty in gaseous
binary mixtures of small molecules with negligible multipolar moments. We use this regu-
larity to construct a new combining rule for the prediction of the cross interaction u,,(r)
in those mixtures. The combining rule gives Ty of the cross interaction as the harmonic
mean of the Boyle temperatures of the pure components. The validity of this harmonic rule
is based on experimental data of 28 binary mixtures, whose T have been obtained from ex-
perimental data of the cross virial coefficient B;,(T). In determining Tz we make use of
non-conformal potentials that have been proven to represent very accurately the effective
interactions of the molecules investigated. The new combining rule is used to give interac-
tion parameters of several dozens of binary mixtures involving noble gases (Ne, Ar, Kr and
Xe), diatomic molecules (N,, O, and CO) and n-alkanes (from methane to n-octane). These
interaction parameters lead to a prediction of cross virial coefficients B,,(T) within experi-
mental error. Electrostatic interactions, originating in permanent dipolar, quadrupolar,
octupolar and hexadecapolar moments and exemplified by molecules of HCI, CO,, CF, and
SFg, depart from the regular non-polar behaviour.

Keywords: Combining rules; Virial coefficients; Binary mixtures; Interactions; Polar and
non-polar molecules; Boyle temperature; ANC potentials.

All classical theories of mixtures and solutions require knowledge of the in-
teractions u, s between molecules of species a and . The problem of incor-
porating adequate interaction models for u, g is usually divided into two
steps: the first is to determine the pure-component interactions u, ,, the
step that can be carried out using information provided by quantum-
mechanical ab initio calculations and/or inversion of thermodynamic data.
The second step is to obtain the cross interaction uyg that in principle
could be determined in the same way. Nevertheless, given the large number
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of possible systems and the scarcity of data, cross interactions in fluid mix-
tures are frequently predicted by means of combining rules expressing the
parameters of the cross interaction in terms of the parameters characteriz-
ing the pure substances®.

Ab initio quantum-mechanical calculations have increased significantly
our knowledge of interaction potential surfaces not only between noble gas
atoms but also between molecules of increasing complexity, as exemplified
by recent work on N,, CO, and Hg ?-. This type of work has also been done
for interactions between different noble gas atoms®® or molecules such as
CH,4-N, ° or fluorobenzene-argon®. Nevertheless, the same as with experi-
mental determinations, the large number of binary systems of interest
makes the calculation of every possible pair interaction unfeasible. This re-
inforces the need for developing adequate combining rules.

Combining rules are tied to the equation of state or to the interaction
model used. Most interaction models involve two parameters: the first, €,
characterising the interaction energy and the second, 9, associated with the
size or diameter of the molecules. The models more widely used are very
simple potentials such as hard spheres and square wells or more realistic
continuous functions, such as the popular Lennard-Jones potential with
exponents 12 and 6 (LJ/12-6) or the Kihara potential with a spherical
core!l, Only very few studies have used three-parameter potentials such as
the LI/n-6 12,

Attempts to derive combining rules from first principles have been based
on the analysis of an approximate quantum-mechanical approach to the
interatomic attraction, in particular those of London!® and Kirkwood-
Muller'4. These theories give formulae for the attractive potential between
two atoms that involve atomic or molecular attributes; polarisabilities and
ionization energies for the London approach, and polarisabilities and dia-
magnetic susceptibilities for that of Kirkwood-Muller. When combined
with a particular potential function and after some simplifications these
formulae lead to the combining rules of Hudson-McCoubrey!® and of
Fender—Halsey®. Further simplification of the Hudson-McCoubrey rule
gives the widely used Berthelot rule, although this was originally proposed
even before the advent of quantum mechanics'’. A second and semi-
classical line of approach considers separating the repulsion or ‘distortion’
energy between two atoms as proposed by Sikoral®. Again, new combina-
tion rules are obtained when this idea is used jointly with a specific interac-
tion function!®. All the combining rules obtained in either of these two
ways contain different kinds of mean values (arithmetic, geometric or har-
monic) of the molecular attributes and potential parameters. Diaz Pefia and
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co-workers have studied systematically a large number of possible combina-
tion rules derived from the above arguments and used the LJ/12-6 potential
and the Kihara potential with a spherical core2°. They assess the combina-
tion rules by their ability to predict second virial coefficients and by the
similarities of the parameters thus obtained with parameters derived from
inversion of transport data. One of their conclusions is that there appears
no systematic trend in classes of substances and that the simplest rules —
the arithmetic mean for the diameters (Lorentz) and the geometric or har-
monic mean for the energies (Berthelot!” and Fender-Halsey!®) — “are close
to the rules giving the best results”?2°,

The purpose of this paper is threefold. First, to introduce an empirical
rule that holds for a large class of non-polar substances. This rule is inde-
pendent of the particular type of potential function used. Second, to incor-
porate a three-parameter potential, which has proven to be very accurate
in accounting for the thermodynamics of the fluids here considered, in the
hope that a more accurate and systematic treatment of pure substances
can lead to better results for their cross interactions. Third, to establish the
limits of application of the empirical rule proposed and to determine which
is the best set of rules — as far as simplicity and accuracy are concerned - for
the non-polar substances here studied.

In the last decade a new family of three-parameter potential functions
has been introduced and shown to account very accurately for the proper-
ties of pure fluids. These functions are termed approximate non-conformal
(ANC) potentials and depend on the shape or form parameter s, besides the
energy € and diameter 821, The ANC potentials have proven to be very suc-
cessful in accounting for the second and third virial coefficients, B(T) and
C(T), of many substances, leading to predictions in close agreement with
experimental information??. They have also been used to predict critical
temperatures for polar and non-polar fluids. A recent review is available for
the reader interested in this topic23.

Here we use the ANC potential functions in two ways. In the first case,
as a tool for the determination of the Boyle temperature, Ty (defined by
B(Tg) = 0), from experimental B,,,(T) data in binary mixtures. It is very
common that B, ,(T) data for many substances are available only at tem-
peratures well below Tg. This fact together with the uncertainties in B, (T)
leads to quite unreliable estimates of Ty for many substances of interest.
The inherent robustness of the ANC approach makes up for a part of these
difficulties and allows to determine the Boyle temperatures of the cross in-
teractions of 28 mixtures involving 18 simple pure substances: the noble
gases (He, Ne, Ar, Kr and Xe), diatomic molecules with small or negligible
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dipole moments (H,, N,, O, and CO) and n-alkanes (from CH, to n-CgH3).
We also consider HCI, CO,, CF, and SFg as examples of polar molecules.
The values of Ty thus obtained and available information on B " (T) allow
us to establish that the Boyle temperature of the cross interaction, T}, is
very close to the harmonic mean of T? for individual components, i. e.,

2 _1,1 (1)

Since Ty in the ANC theory is expressed directly in terms of the substance
interaction parameters €, 6 and s, Eq. (1) gives in essence a combining rule
for these parameters.

In the second application of the ANC approach, we show that the above
combining rule leads to a prediction of the cross interactions in systems dif-
ferent from those used to construct the rule. The knowledge of these effec-
tive interactions, together with the ANC potential functions and other two
well known combining rules, gives very accurate second virial coefficients
for close to 90 binary mixtures.

In the next section we introduce the ANC potential functions and quote
the properties more relevant for our purposes. In the same section, we in-
troduce the more traditional combining rules relevant to this work. Then
we present our main results, namely, the empirical evidence supporting the
rule in Eq. (1) and discusses its application in the prediction of the cross in-
teractions of the binary systems here considered, and for which no empiri-
cal evidence is available or is insufficient. Finally, in the last section we
advance a few conclusions.

THEORY

ANC Potential Functions

The family of non-conformal potentials used in this work is defined by?!

29 =¢ 1-a ff Dla Dﬁﬁ )
E(z 9-a ~ “Res-ad g

where T = (z%/s + 1 - 1/s)Y3, z = /3, r is the interparticle distance, a =
0.09574 and o is the distance where the function (2) has its minimum
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Uanc(z = 1) = —e. The form of upxync(2) is determined by the dimensionless
form factor s called the softness of the potential. For s = 1.1215 the func-
tion uanc(2) is closely conformal to a LI/12-6 potential. Decreasing s makes
Uanc(z,s) steeper (or harder) so that for s = 0 Eq. (2) gives a hard-sphere po-
tential. Any two potentials with the same s are conformal to each other and
follow the principle of corresponding states; whereas potentials differing in
s are not conformal to each other??. The reader can find a more detailed ac-
count of the ANC theory in a recent review?s.

An important property of ANC functions follows directly from their defi-
nition (2) and is expressed as a linear relationship between reduced second
virial coefficients B*(T",s) = B(kT/g,s)/(2n&/3) of two non-conformal sys-
tems. Here we set T" = kT/¢. In particular, choosing as reference the system
with s = 1, and writing B, = B"(T",s = 1), this linear property is?

Bunc (T5) =1 —s +sBy(T) . (3)

This relation, exact for ANC potentials, is followed to very good approxima-
tion by the virial coefficients of many substances??. The reference virial co-
efficient B, (T") is known as a function of T* and closely resembles the virial
coefficient of argon??. Hence, from Egs (2) and (3) the knowledge of the pa-
rameters €, &0 and s determines directly both the potential function and
B(T).

The Boyle temperature Tz where B(Tg,s) = 0 follows simply from Eq. (3) as

By (Ty) = (s — s (4)

which can be inverted numerically to obtain??

T, (s) = 0.189754 + 2.09123s — 1.404325s2 +

+ 3.87119s® — 3.225s* + 1.27345s5. (5)

Combining Rules

The combining rules, which will be referred to in this work, were chosen
from a wide selection!®24-27 pecause of their simplicity and accuracy®®.
They are the rule of Lorentz for the molecular diameters

8, = (8, +8,)/2 (6)
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and for the energy the rules of Berthelot!®

€1, =EE, )

of Hudson-McCoubrey?!®

2,11 2,/0,0
812 = 8182 I == hi (8)
1 + I2 612
and the harmonic mean of Fender-Halsey®
2¢. €
€, = i S (9)
€, +¢€,

In these equations, g and 9, are the interaction parameters that correspond
to the pure components and €;, and &, give the cross interactions in the
mixture. Last, |; are the (first) ionization energies of the molecules. In ap-
proaches using two parameters, the Lorentz rule Eq. (6) together with one
of Eqgs (7), (8) and (9) are sufficient to specify the cross interactions. Never-
theless, for three-parameter potentials such as usyc(z,S) one needs a third
combining rule to determine the softness s;, of the cross interaction. Here
we propose the harmonic combination of the Boyle temperatures,

2T° T}
- :781 ZB . (20)
T°+T,

Since T/ =¢,;T,°/kand T,;® =T™(s;) we can write Eq. (10) in terms of the

interaction parameters &ij and Sij

2¢.¢€,
81T1*B (Sl) + SZTZ*B (Sz)

€, Ty (5,) = T2 (s)T,0(s,) - (11)

It is useful to combine Eqgs (7), (8) and (9) with Eq. (11) to get the following
relations for the cross interaction softness s;,:

8 _ 2,/g,.8, . .
T (Slz)_slT*B(sl)+szT*B(sz)T (s))T®(s,) (12)
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. 2 . .
To(s,)= a2 o VELE TR)T6,)  (13)

21,1, Jdd, &T®(s,)+e,T2(s,)

and

€, tE,
e, T7(s) +€,T7(s,)

TP(s,) = TP ()T (s,) - (14)

When used jointly with Eqg. (11), Egs (12), (13) and (14) are equivalents to
the rules of Berthelot, Hudson-McCoubrey and Fender-Halsey, respectively.
We have written explicitly that the factors T,® are functions of s;;, which
are given by Eqg. (5).

j

RESULTS AND DISCUSSION

Harmonic Mean Rule for Boyle Temperatures

We present here the evidence regarding the validity of the harmonic mean
rule (HMR) for the Boyle temperatures given by Eq. (10). It is reasonable to
expect that the validity of a given set of combining rules depends on the
type of molecular interaction involved. Here we focus our discussion on the
cases where the short-range overlap and the London dispersion forces pre-
dominate. Thus we have selected 16 substances with negligible multipolar
moments: the noble gases (He, Ne, Ar, Kr and Xe), three diatomic molecules
(H,, N, and O,) and eight n-alkanes (from methane to n-octane). For brev-
ity we shall refer to these molecules as non-polar; they were chosen for two
reasons. First, their ANC interaction parameters and Boyle temperatures are
well established, and second, there is experimental information about the
cross virial coefficients of many of their binary mixtures. Further, the mo-
lecular properties (size, ionization energy | and polarisability a) of the no-
ble gases and of the alkanes vary systematically within each group. Besides
these substances and in order to explore the influence of electrostatic inter-
actions, we have also considered five additional molecules: CO and HCI
(dipolar), CO, (quadrupolar), CF, (octupolar) and SFg (hexadecapolar). Mo-
lecular properties of 21 selected substances are given in Table I. The ioniza-
tion energies were taken from Vedeneev et al.?® except for that of HCI that
was taken from the NIST database?®.

All experimental data on B(T) were obtained from the recent exhaustive
compilation of Dymond et al.3%. The possible binary mixtures of the sub-
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stances here considered fall into three sets with respect to the existence and
quality of B,,,(T) data: set I, systems for which B, ,(T) data are sufficient in
number, temperature range and quality to determine Ty with reasonable ac-
curacy. Set Il, systems for which there are B,,,(T) data, but these are only
sufficient to give a qualitative estimate of the values of Ty, and set Ill, sys-
tems without B,,,(T) data.

TABLE |
Interaction parameters of pure substances®

Substance (e/k), K 5, nm s T K I, eVP
He 7.264 0.2982 1.1152 24.36 24.58
Ne 40.45 0.3054 1.0583 124.0 21.56
Ar 145.9 0.3685 0.9993 407.8 15.78
Kr 202.9 0.3985 0.9993 566.9 14.00
Xe 280.6 0.4333 0.9993 784.3 12.13
H, 22.18 0.3669 1.3192 104.6 15.60
N, 132.7 0.3889 0.9172 326.3 15.58
0, 160.3 0.3620 0.9432 410.3 13.62
(6{0) 145.3 0.3960 0.8876 340.8 14.01
SFg 479.9 0.5037 0.6068 707.4 19.30
CH, 210.5 0.3947 0.9073 509.4 12.99
C,Hg 361.1 0.4627 0.8088 747.6 11.65
CsHg 515.0 0.4997 0.7008 893.2 11.08
n-C,H;, 671.4 0.5330 0.6148 1003.9 10.63
n-CgH,, 805.7 0.5673 0.5503 1071.1 10.55
n-CgHy, 929.9 0.5993 0.5119 1149.0 10.48
n-C;Hq 1059.2 0.6255 0.4693 1202.8 10.39
n-CgH, g 1174.2 0.6515 0.4388 1251.9 10.24
CF, 325.4 0.4496 0.6558 522.7 17.80
SFe 479.9 0.5037 0.6068 707.4 19.30
Co, 486.1 0.3830 0.5994 707.1 13.79
HCI 561.3 0.3823 0.4510 736.6 12.74

% Values of ANC parameters €, & and s, and Boyle temperatures Ty are those reported in
ref.?2¢ ® Jonisation energies are from refs?%:2°
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Analysis of the information provided for set | allows us to identify 28
mixtures satisfying the HMR for Tg. Tables IlA and 1B contain the informa-
tion about these mixtures. The tables compare the value of Ty determined
from the B,,,(T) data — denoted Tg(exp) — with the value Tg(HMR) obtained
from the combining rule, Eq. (10). The fourth column shows the per-
centage deviation 100 x 8T,/ T, (exp), where 8T, = T, (exp) — T, (HMR). De-
termination of Ty from the B, (T) data was made by interpolation or
extrapolation of the same data. Of course, to be significant, a nonzero devi-

TaBLE IIA

Binary mixtures obeying the HMR and involving noble gases and diatomic molecules

Tg K
System #g?e;pé)IB S?n(gcﬁr)wborl S?n(g)ﬁsgrl
exp HMR
Ne-Ar 191.7 190.1 0.8 0.2 +3.0
Ne—Kr 204.9 203.4 0.7 0.2 +2.0
Ne-Xe 204.3 214.1 -4.6 -1.7 +3.0
Ar—Kr 476.5 4743 05 0.2 +6.0
Ar—Xe 532.8¢ 536.5 -0.7 0.4 +2.0
Kr—Xe 648.6 658.1 -1.4 -0.8 +6.0
Ne-N, 168.7 179.7 -6.1 -1.9 +3.0
Ne-O, 202.4 190.4 6.3 1.7 +2.5
Ne-CO 171.0 181.8 -6.0 -1.9 +1.0
Ar-N, 363.0 362.5 0.1 0.1 +3.0
Ar-0, 398.9 409.0 -25 -1.3 +2.5
Ar-CO 372.1 371.3 0.2 0.1 +4.0
Ar-HClI 522.6¢ 524.9 -0.4 0.2 +3.2
Kr-CO 426.7¢ 4257 0.2 0.1 +1.0
Xe-N, 467.4¢ 460.9 1.4 0.9 +2.0
Xe-CO 482.4 475.1 1.5 1.0 +4.0
N,~CO 333.1 333.4 0.5 0.3 +1.0
N,~O, 371.7 363.5 2.3 1.0 +0.8

& 8Ty is the deviation of Tg(exp) from the value obtained by the HMR. b 3B(eq) is the equiva-
lent deviation in B(T) form experiment producing the observed deviation 8Ty (see the text).
¢ 8B(exp) is an estimate of the experimental error in B at points close to Tj. d Tg obtained by

extrapolation of Bexp(T) data; the remaining values involve an interpolation of Bexp(T).
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ation 8T, has to be smaller than the error in determining Ty itself. On inter-
polation, the error in Tg is due to the error 8B, ascribed to experimental
points and their scatter. On extrapolation, there is an additional source of
error, which depends on the extrapolating function and the distance of the
experimental points to the B = 0 axis. For all systems of set I, the error in
Tg(exp) was estimated to be smaller than 5%.

The deviation 8T, is thus a first indicator of the validity of the HMR for
these mixtures: most systems in Tables Ila and 11B show deviations smaller
than 3% and only a few deviate for as much as 4 or 6%, while systems in
Tables I11A and I1IB show deviations as large as 65%. In order to ascertain
further that the HMR follows the experimental information on these sys-
tems we compare the experimental error of the B,,,(T) data withdB,, =
(0B/0T)dT,, which is the error in B that would be necessary to produce the
observed error 8Tg. The deviation 8B, is shown in column 5 of the table
and for the HMR to apply it should be smaller than the estimated experi-
mental uncertainty of the data, 0B,,,, contained in the last column. The
magnitude of 3B,,,, was obtained from the same source as the B,,,(T) data®.

TasLE 1IB
Binary mixtures obeying the HMR for Ty involving n-alkanes with noble gases and diatomic
molecules. Explanation of the symbols is the same as in Table IIA

Ten K 100 x 8T,
X 0Ty 3B(eq) 3B(exp)
System Tg(exp) cm® mol™? cm?® mol™
exp HMR

AF—CH4 454.1 452.9 0.3 -0.1 +1.5
Ar-C,Hy 517.1° 527.7 2.0 1.3 +0.6
Ar-C5Hg 556.17 559.9 0.7 05 +1.0
Kr-CH, 535.2 536.6 0.3 0.1 +1.5
Xe-C,Hg 751.3° 765.5 1.9 15 +16.0
N,~CH, 396.12 397.8 0.4 0.2 +0.5
N,~C,Hq 469.6% 454.3 3.4 23 +2.0
N,C,H,,  486.2° 492.5 13 3.7 +6.5
0,-CH, 436.12 454.3 4.0 2.0 +1.0
CO-CH, 415.82 408.37 1.8 -1.0 +0.5

& Ty obtained by extrapolation of B
tion of Bexp(T).

exp(T) data; the remaining values involve an interpola-
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Analysis of the information gathered on 8Ty shows very clearly which
systems satisfy the HMR (Tables IlA and 11B) and which not (Tables 1A and
I11B). The mixtures that follow the HMR for Ty are all those constituted by
non-polar substances — except He, H, and to some extent Ne. Systems with-
out n-alkanes are considered in Table IIA, and Table IIB contains systems
with at least one alkane.

We first explain, with reference to Fig. 1, the procedure followed to deter-
mine Tg by interpolation or extrapolation using the ANC model for B(T).

TasLE A
Binary mixtures not obeying the HMR for Ty that contain He or H,. Explanation of the sym-
bols is the same as in Table IIA

Te K

System #g?e;pé)TB ian(g qn)1 oL
exp HMR
He-Ne 52.83 40.72 22.9 5.8
He-Ar 70.472 45.97 34.8 134
He—-Kr 83.182 46.71 43.8 22.4
He-Xe 105.0? 47.25 55.0 65.9
He-H, 29.64 39.52 -33.3 6.4
He-N, 82.59 45.34 45.1 21.9
He-CO 86.10 45.47 47.2 24.2
He-O, 99.57 45.99 53.8 27.8
He-SFq 128.12 47.13 63.2 58.0
H,—Ne 96.872 113.5 -17.1 3.0
H,-Ar 223.7 166.7 25.6 8.9
H,—Kr 253.0 176.6 30.2 12.3
H,—Xe 265.2 184.6 30.4 13.8
H,-CO 178.7 169.7 10.4 3.3
H,—N, 169.2 158.4 6.4 1.9
H,~CH, 198.4 173.6 14.3 3.6
H,—C,H, 277.1 183.5 51.0 27.6
H,~CgHyg 295.1 193.1 52.8 39.6

& Ty obtained by extrapolation of B
tion of Bexp(T).

eXp(T) data; the remaining values involve an interpola-
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The figure shows the cross second virial coefficients B;,(T) of two systems:
Ne-Ar and Kr—-CO. For each mixture we show the experimental points
Bexp(Ti) @and the curve fitted to them that was used to localize the Boyle
point B = 0. This curve is given by the ANC model for B(T; €;,, 8,5, S15), EQ. (3),
with 8,, from the Lorentz rule and an initial value for the softness given by
sy, = 25;5,/(s; +S,); then g, was determined by a least-square fit to the
Bexp(Ti) data. Usually this procedure leads to a fit well within the scatter of
the experimental data. In the cases where this did not happen a new value
of s;, was adopted and the procedure repeated again.

We now analyse Fig. 1 as example of the way in which the HMR is satis-
fied. The first mixture, Ne—-Ar at the top in Fig. 1, has the Boyle point B =0
at Tg(exp) = 191.7 clearly interpolated by the fitting curve B,yc(T). The fig-
ure also shows the Boyle point obtained from the HMR: it sits almost pre-
cisely where the fitting curve crosses the B = 0 axis. The second mixture,

TasLE I1IB
Boyle temperatures for binary mixtures with significant electrostatic interactions. Explana-
tion of the symbols is the same as in Table IIA

Tg, K

100 x &Tg 3B(eq)
System Tg(exp) cm® mol™?
exp HMR
CO,-CH, 622.41 592.2 5.1 -2.4
CO,—C,Hq 870.19 726.8 19.7 -7.8
HCI-C3H 629.31 807.4 -22.1 28.1
HCI-Kr 434.91 640.7 -32.1 29.7
CO-C3Hg 533.7 493.4 8.2 -2.0
CO-CgHyq 602.4 535.8 11.1 -9.3
CH,-CF, 466.8 516.0 -9.5 -8.3
C,Hg—CF, 557.9 615.3 -9.3 10.2
SF-Ne 267.7° 211.0 28.2 11.1
SFe-N, 478.12 446.6 7.1 5.3
SFg-O, 510.9° 519.4 -1.6 -1.1
SFe-Ar 574.1% 517.3 9.9 5.7
SFe—Kr 586.8% 629.4 -6.8 -5.2

@ T, obtained by extrapolation of B
tion of B, (T).

exp(T) data; the remaining values involve an interpola-
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Kr-CO at the bottom in Fig. 1, has its Boyle point outside the range of ex-
perimental data, nevertheless, the fitting curve nicely extrapolates and
crosses the B = 0 axis very close to the HMR value. Figure 2 gives two exam-
ples of mixtures, N,-CH, and CH,—-C,Hg, containing an alkane and follow-
ing the HMR. The fitting curves in both systems cross the B = 0 axis very
close to the Boyle point determined by the HMR.

All systems in Tables IIA and 1IB follow the same behaviour as the exam-
ples in Figs 1 and 2. The percentage deviations of Ty from the HMR are
smaller than 3% for the large majority of systems, the equivalent errors 3B,
are all smaller than 4 cm® mol-! and in most cases they are smaller than
OBeyp- SO the HMR clearly applies to these systems within experimental un-
certainty.

The Boyle temperatures of the cross interactions for mixtures of the light
gases, He and H,, are given in Table IlIA. Examples of the anomalous be-
haviour of these systems are the He-Kr and Xe-H, mixtures whose B(T) is
shown in Fig. 3. In the first mixture the Boyle point is below the range of
the data and the fitting curve crosses the B = 0 axis at a point 36 K above

Ne - Ar ; Kr - CO
50 N T T I T I T
AL A A A K
0 La sk A A v
—"—O' -50 —
E
g L i
o
e
= -100 —
-150 — —
_200 ‘ 1 | 1 | 1 | 1
100 200 300 400 500
T/K
Fic. 1

Temperature dependence of the virial coefficients of the mixtures Ne-Ar (A) and Kr-CO (@).
The stars () denote the Boyle temperatures according to the harmonic mean rule, MHR. The
lines correspond to an ANC model. Both systems satisfy the MHR
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the HMR value for Tg. In the latter mixture the Boyle point falls within the
range of the data but these clearly point to a Boyle temperature quite differ-
ent from that given by the HMR. Figure 4 gives two examples of mixtures,
CF,~CH, and Kr-HCI, that do not follow the HMR. The fitting curves in
both systems cross the B = 0 axis far away from the Boyle point determined
by the HMR.

The systems in Tables IlIA and 11IB do not follow the HMR. The devia-
tions 8Ty are significant, predominantly positive, in all cases but one larger
than 10% and even as large as 63%. The equivalent errors 3B, are corre-
spondingly higher. A tentative explanation of the anomalies of systems in
Table IlIA is in order. He and H, make an exception because their correct
treatment should be based on quantum mechanics even if their virial coef-
ficients are very well accounted for by ANC functions. Thus their anoma-
lous behaviour vis-a-vis the combining rules could be tentatively ascribed to
quantum-mechanical effects. A puzzling case is that of neon. While the
mixtures of Ne with Ar, Kr, Xe, N,, O, and CO all conform to the HMR (see
Table 11A) the Ne-CH, mixture has its Boyle temperature clearly away from

N,-CH,iCH, - C}H,

B(T)/ em’mol”
a
=
[

-100 - ¢

-15 : L i
! (%OO 200 300 400 500 600 700 800

T/K

Fic. 2
Temperature dependence of the virial coefficients of the mixtures N,-CH, (®) and CH,-C,Hgq
(A). The stars () denote the Boyle temperatures according to the harmonic mean rule, MHR.
The solid lines correspond to an ANC model and the dotted and dashed lines represent B(T) of
the pure components: N, (left), CH, (middle) and C,Hg (right). Both systems satisfy the HMR
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He +Kr: Xe +H,
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FiG. 3
Temperature dependence of the virial coefficients of the mixtures He-Kr (@) and Xe-H, (V).
The stars () denote the Boyle temperatures according to the harmonic mean rule. These sys-
tems do not follow the rule
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Temperature dependence of the virial coefficients of the mixtures CF,~CH, (®) and Kr-HCI (A).
The Boyle temperature according to the harmonic mean rule is denoted by a star (O) for
CF,—CH, and by a diamond () for Kr—HCI. These systems do not follow the HMR rule
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the HMR value, a deviation that, accepting the reported errors in Bg,,(T),
cannot be ascribed to experimental uncertainties.

We find that mixtures where electrostatic interactions are not important
follow also the HMR. This happens in particular in mixtures where the po-
lar constituent — such as CO - has a small dipolar moment and the non-
polar constituent is weakly polarisable. Tables IIA and 1IB contain examples
of this behaviour in systems formed by CO with Ne, Ar, Kr, Xe, N, and CH,.
It turns out that the mixture Ar-HCI has also a very small deviation 8Ty =
2.5 K from the HMR and has thus been included in this class; it seems that
in spite of the high dipole moment of HCI the polarisability of argon is
small enough to make the induction effects negligible.

The behaviour of Ty changes drastically with mixtures involving mole-
cules with strong electrostatic interactions, which can be due to an increase
in the electrostatic moment of one of the molecules in the mixture, or to
the increased polarisability of the non-polar molecule, or to both factors
combined. We already gave examples of this behaviour in Fig. 4. We first
analyse the effect of increasing the polarisability of one component at a
fixed dipole moment u” = p/v/ed® of the second. We discuss the mixtures of
CO as component 1 with Ar, Kr, Xe, N,, CH,, C3;Hg and n-CgH,5 as compo-
nent 2. In the order of increasing reduced polarisabilities a* = 032, we have:
a" =29.9 (N,), a" = 32.4 (Ar), a” = 39.3 (Kr), a" = 41.2 (CH,), a” = 49.4 (Xe),
a” = 50.3 (CzHg) and o = 55.7 (n-CgH,g). From the tables, we find that
0Ty grows abruptly from almost zero for CO-N, (or Ar) to 8Tz = 67 K for
CO-n-CgH;g. This means that 8Ty increases with the polarisability of the
non-polar component, which is what we could expect if deviations from
the HMR were ascribed to the electrostatic induction forces between CO
and its polarisable partner molecule given that these forces are proportional
to a"u"2. Consideration of the mixtures containing HCI leads to a similar
conclusion: Whereas the HCI-Ar mixture has Ty very close to the HMR
value, mixing HCI with the more polarisable C;Hg and Kr gives significant
deviations, 8Ty = 176 and 206 K (see Tables IIA and I11B). In these cases, of
course, deviations are much larger than for CO due to the higher dipole
moment of HCI. Contributions from other electrostatic moments follow
similar trends. The quadrupolar moment of N, does not appear to have any
noticeable effect although we can assess the influence of the quadrupolar
moment by looking at mixtures with CO,: when mixed with CH, it gives
0Ty = 30 K (Table 111B) but, when mixed with the more polarisable C,Hg, it
has 8Tz = 143 K. The octupolar interaction follows similar lines, as con-
firmed by two mixtures: CF,—~CH, and CF,~C,Hg have deviations &Tg = 49
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and 58 K, respectively. Lastly, introducing a hexadecapolar molecule, SFg,
again produces a departure from the HMR with 8Tg = 9 K for SFg—O, and
0Tg = 57 K for SFg-Ar.

The 28 systems whose Ty follows the HMR (Tables 11A and 11B) and the
31 systems that do not follow this rule (Tables 1A and 11IB) are all the bi-
nary mixtures for which Ty can be determined with a reasonable accuracy
of ca. 5%. All 31 systems but one, that do not conform to the HMR, contain
a light molecule (He or H,) or an induced electrostatic interaction between
a fairly polarisable molecule and another one with a permanent multipolar
moment. The only troublesome exception is the Ne—-CH, mixture; it shows
a deviation from the HMR, which even though small, cannot be explained
easily by advocating the reported experimental uncertainties.

We shall focus next on the use of the HMR to predict the cross interac-
tion virial coefficient B,,(T) of all mixtures for which the rule can be as-
sumed to hold. The comparison of this prediction with experiment brings a
further proof of the validity of the HMR for mixtures of molecules with
negligible electrostatic moments.

Prediction of Cross Interactions

Based on the results of the last subsection, we assume that the HMR holds
for all mixtures of the non-polar molecules here considered with the excep-
tion of those involving He or H,. In order to complete the set of combining
rules, we assume the Lorentz rule for the diameters and one of the follow-
ing rules: Berthelot, Hudson-McCoubrey and Fender-Halsey. With these
rules, the pure-substance parameters in Table | and the ANC model for
Banc(T) (EQ. (3)), we can predict the second virial coefficient for any mix-
ture and compare it with experiment. The results of these predictions are
given in Tables IV for different types of molecules. The tables contain the
diameter 9,, obtained from the Lorentz rule and, for each of the three com-
bining rules considered, the tables give the energy ¢,,, the softness s;, and
the root-mean-square deviation Q of the model B(T) from the experimental
data. The comparison of the energy rules in the tables allows to assess the
adequacy of each to predict B,,(T).

We start by considering the mixtures of noble gases and diatomic mole-
cules in Table IVA. Since these mixtures are not too asymmetric, with po-
tential parameters of similar magnitude, all three energy rules give similar
values of ¢, and s;,. They give also almost equally good predictions, with
small deviations from the data. Nevertheless, on a closer look, we can re-
gard the Fender—Halsey rule as slightly more accurate; not only because it
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has a smaller overall deviation, but also because this rule is intrinsically
better in dealing with conformal and nearly conformal systems. Indeed, it
is the only rule to give an adequate answer in the limiting case of a
conformal mixture, where both substances and the cross interaction should
have equal softness. To exhibit this point we substitute s; = s, in Eqgs (12),
(13) and (14) to get, after simplification,

To(s,) = Voif2 1o (g (15)

1 2

T®(s,) = htl, e 2VEE re
12

(s1) (16)
2 |1|2 w/dldz 81 +€2 '

and

T®(s,)=T7%(,). (17)

It can be immediately seen that in the general conformal case (g, # €,, 8; #
d,, 81 = S,), only the third rule (Fender-Halsey) makes the cross interaction
conformal to the other two ones. Table IVA contains three strictly con-
formal mixtures (with s; = s, = 0.9993): Ar-Kr, Ar-Xe and Kr-Xe. For them
the Fender-Halsey rule prediction of B(T) is the closest to B,,,(T) (it has the
smallest Q).

We now consider systems involving alkanes. Their predicted interaction
parameters are given in Tables IVB (mixtures with noble gases), IVC (mix-
tures with diatomic molecules) and IVD (mixtures with other alkanes).
These parameters and the consequent mean deviation Q from B, (T) were
obtained in the same way as those of noble gases in Table IVA. The three
energy-combining rules give almost equal results for mixtures that are
nearly conformal. These mixtures are those of CH, with a noble gas or a di-
atomic molecule, and those with two n-alkanes differing only in one carbon
atom: CH,C,Hg, C,HgC;Hg, CsHgN-CyHyp, N-CH;;1-CsHyy, N-CoH 5, N-CHyy,
n-C,H,;s—N-CgH;5. In systems of higher n-alkanes with diatomic molecules
or of two alkanes differing in two or more carbon atoms, the Berthelot rule
is clearly superior to the other two ones; almost in all cases it gives smaller
mean deviations than the Fender-Halsey or Hudson—-McCoubrey rules. The
exceptions seem to be C3Hg—n-C;H;5 and C3Hg—n-CgH, g, and, to a lesser ex-
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tent, n-C,H,,—n-CgH,, and n-CgH,,—n-CgH 5. The results for n-alkanes with
noble gases in Table 1VB, however, look little systematic: the Berthelot rule
gives very good agreement for the mixtures of Ar-CH,, Ar-C,H;, and
Ar-n-CgH,5, and again for Kr-CH, and Xe-CH, mixtures. Nevertheless, this
rule seems to give poor predictions for Ar-n-C;H,,, Ar-n-CgH,, and
Ar-n-C,H;.

In order to determine the possible origin of a poor prediction by the
Berthelot rule in the cases pointed out above we have first to look directly
at the B,,,(T) data. We consider first the mixtures of Ar with CH,, C,Hg,
C3Hg and C4Hy,. Figure 5 shows B, ,(T) for each of these systems together
with the ANC predictions using the Berthelot rule, which agrees very well
with the data. Next, in Fig. 6, we show the difficult cases of mixtures of Ar
with n-CzHq,, n-CgH,,, n-C;H;5 and n-CgH,4 clearly showing that the dis-
agreement of the theory with the data is due to the poor quality of the lat-
ter. The case of the mixtures C3Hg-n-C,H;5 and C3Hg—n-CgH; g can similarly
be ascribed to experimental data of very poor quality.

Ar + n-alkanes

50 . ‘ . | . .

A
S

-100

B(T)/ cm’mol”

-150

-200

100 200 300 400 500 600

Fic. 5
Cross second virial coefficient in mixtures of Ar with n-alkanes. B, experimental data of Ar
with CH, (@), C,Hg (©), C3Hg (A) and n-C,H,, (+). The lines are the ANC predictions using
the HMR with the rules of Lorentz and Berthelot
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All the above means that the Berthelot rule for the energy, the Lorentz
rule for the diameters and the corresponding HMR for the softness con-
stitute a set of combining rules which, when used jointly with the ANC
potentials, gives a good prediction of all the 66 systems in Tables IV. Never-
theless, for mixtures of a noble gas with another noble gas or with a di-
atomic, the Fender-Halsey rule may be considered better. The results of the
Hudson-McCoubrey rule are very close to those of the Berthelot rule.

As the final exercise we predict the cross interactions in systems with
n-nonane, n-decane and n-dodecane. No direct measurements of B(T) for
these hydrocarbons have been reported in the literature. Nevertheless, there
are data on several mixtures involving them, namely for n-CyH,, n-C;oH,,
and n-C;,H,s mixed with Ar, N, and CH,. Here we calculate B;,(T) for these
systems by a simple procedure. First, we obtain the ANC parameters for
n-CyH,,, Nn-CyoH,, and n-Cj,H,4 based on previous analyses of the ANC
interactions of the first 8 alkanes. This analysis affords formulae g(n), &(n)
and s(n) for the interaction parameters in terms of the number n of carbon

Ar - n-alkanes
0 T

-50

-100

B(T)/ em’mol”
G
(=)

-200

-250

300 400
T/K

Fic. 6
Second virial coefficient in mixtures of Ar with n-alkanes. B;, experimental data of Ar with
n-CsH,, (@), n-CgH,, (), n-C,H ¢ (A) and n-CgH, 4 (+). The lines are the ANC predictions us-
ing the HMR with the rules of Lorentz and Berthelot for Ar-n-C;H,, (solid line at the top),
Ar-n-CgH,, (dashed line), Ar-n-C,H,4 (dash-and-dotted line) and Ar-n-CgH,¢ (solid line at the
bottom)
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atoms in the alkane?2. The values of these parameters are given in Table V
together with the calculated Boyle temperature for each substance. Second,
we calculate the cross interaction parameters €;,(n), 8;,(n) and s;,(n) for n =
9, 10 and 12 using the rules of Lorenz, Berthelot and HMR. Third, we calcu-
late B(T) from the ANC model. The resulting theoretical results Byc(T) are
then compared with experimental data in Figs 7 and 8 for mixtures with

TABLE V
Interaction parameters and Boyle temperatures Ty of the higher n-alkanes considered in this
work

Substance ek, K 3, nm s Tg K

n-CyH,q 1301.1 0.6791 0.4127 1311.8
n-C,oHy, 14147 0.7045 0.3902 1357.1
N-CyyHas 15235 0.7290 0.3706 1397.9
N-CyoHag 1627.5 0.7528 0.3535 1434.6

Ar - "’C9H20’ N2 - ”’C’QHzo’ CH4 - ergl-l2
O T |

0
T T

-200

-400

B(T)/ em’ mol”!

-600

200 300 400 500

Fic. 7
Second virial coefficient in mixtures of n-nonane. B,, experimental data of n-C4H,, with Ar (@),
N, (A) and CH, (®). The lines are the ANC predictions using the HMR with the rules of Lo-
rentz and Berthelot
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n-CgH,, and n-C,yH,,. The agreement of the theory with experiment is very
good. However, in the mixture involving n-C,,H,s for which BJ"(T) data
are available, the prediction agrees poorly with the only two experimental
points; the scarcity of the data does not permit to draw any firm conclusion.

N, -n-C

AIOHZZ, Cl—[4 -n-C, H

107722

-100 —

-200

B(T)/ em’mol”

-300 —

-401
%00 300 400 500
T/K

Fic. 8
Second virial coefficient in mixtures of n-decane. B,, experimental data of n-C,,H,, with
N, (®) and CH, (A). The lines are the ANC predictions using the HMR with the rules of
Lorentz and Berthelot

All the said above allows to use the HMR together with the Lorentz and
Berthelot rules to predict the interaction parameters and virial coefficients
for mixtures of non-polar substances, and in particular for the 50 binary
mixtures of heavy noble gases, N, and O,, and the first ten n-alkanes. The
parameters of these interactions are not reported explicitly here since the
reader can calculate them straightforwardly from the combining rules and
parameters of pure compounds given in the present paper.

CONCLUSIONS

We have shown the existence of an empirical rule giving the Boyle temper-
ature of the cross interaction as the harmonic mean of the Ty of the pure
components. We have proven that this HMR is supported, with very good
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accuracy, by experimental B(T) data for 28 binary mixtures. This rule
should withhold in mixtures of non-polar molecules, except He and H,, and
for some polar molecules with not-too-high electrostatic moment mixed
with not-too-polarisable molecules. Both quantum-mechanical effects and
electrostatic interactions are factors explaining departures from the HMR.
The virial coefficients of non-polar substances can be predicted with good
accuracy using the ANC potentials and the combining rules of Lorenz,
Berthelot and the HMR. The prediction of cross interactions in systems con-
taining n-alkanes with 9 and 10 carbons agrees very well with experiment.

SYMBOLS

hard-core diameter of the Kihara potential function
second virial coefficient

cross second virial coefficient

second virial coefficient of ANC system

reduced second virial coefficient

reduced second virial coefficient of ANC system
reduced reference second virial coefficient
experimental value of the second virial coefficient
B experimental value of the cross second virial coefficient
third virial coefficient

ionization energy of i-th species

particle number

Boltzmann constant

root-mean-square deviation

centre-to-centre distance

softness form parameter

softness of i-th species

softness of cross interaction

initial value of softness parameter

temperature

reduced temperature

Boyle temperature

reduced Boyle temperature

Boyle temperature of i-th species

Boyle temperature of cross interaction

ANC-type potential function

reference potential function

cross interaction potential (between dissimilar species)
dimensionless distance

molecular polarisability

reduced molecular polarisability

mean molecular diameter

cross mean molecular diameter
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8B, error in B equivalent to deviation 8Ty

8B.,, estimated experimental error in B

oT, deviation of experimental Boyle temperature from the mean harmonic rule
op,, Op, statistical errors in vapour and liquid densities

€ attractive energy parameter

g, energy parameter of i-th interaction

€, energy parameter of cross interaction

H dipole moment

vy reduced dipole moment

14 auxiliary variable
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